

Major Challenges Impacting Today's Growers

Environmental Impacts

- Soil erosion and degradation
- Increasing climatic variability¹
- Drought conditions
- Runoff into waterways²

Declining Farm Incomes

- Increased operational costs³
- Variable yield and crop quality
- Abjotic stressors
- Decreased product efficacy

Regulatory Scrutiny

- Challenging regulatory hurdles
- GHG emissions
- Shift to organic (+10% CAGR)

1. KTVO, "lowa DNR: Last 18 months the wettest on record," KHQA News, November 22, 2019, available at https://khqa.com/news/state/iowa-dnr-last-18-months-the-wettest-on-record-11-22-2019. 2. Daniel Hellerstein, Dennis Vilorio, and Marc Ribaudo, "Agricultural Resources and Environmental Indicators, 2019" (Washington: U.S. Department of Agriculture Economic Research Service, 2019) available at https://www.ers.usda.gov/webdocs/publications/93026/eib-208 summary.pdf?v=2348.3

3. "Rising Wages Point to a Tighter Farm Labor Market in the United States." USDA ERS - Rising Wages Point to a Tighter Farm Labor Market in the United States, www.ers.usda.gov/amber-waves/2019/february/risingwages-point-to-a-tighter-farm-labor-market-in-the-united-states/.

Soil Microbes Can Act As An Attractive Solution To Improve:

Soil Health

- Water-use efficiency
- Nutrient availability
- Soil structure
- Vigorous microbiome

Profitability

- Crop yields and quality
- Crop abiotic resistance
- IPM tools and approach

Sustainability

- Nutrient leaching and runoff
- Worker safety
- Carbon capture
- N₂0 and Methane emissions

...and these benefits can be achieved today

Microbes: An Important Part of Our World

The world's functional chemistry is dictated by microbes

- **Probiotics for Humans:** "Good bacteria" to support gut bacteria and positively impact the digestive system
- Probiotic Activity: Microbes regulate much of the metabolic activity in our digestive systems that drive nutrient status, immune health and general vitality
- Probiotic Benefits: Increased nutrient absorption, protect gut from harmful bacteria, and preventing allergies and colds¹

- Plant Probiotics: Beneficial microbes which interact with plant and soil especially in rhizosphere
- Plant Probiotics Activity: Decades-long research from private and public institutions has shown soil microbes support soil health and plant productivity
- Plant Probiotics Benefits: Improvements to nutrient availability, soil compaction and water retention, and regulation of GHG emissions

Recent Microbial Innovations

Innovations in microbial production and development mitigate variability and challenges of previous products

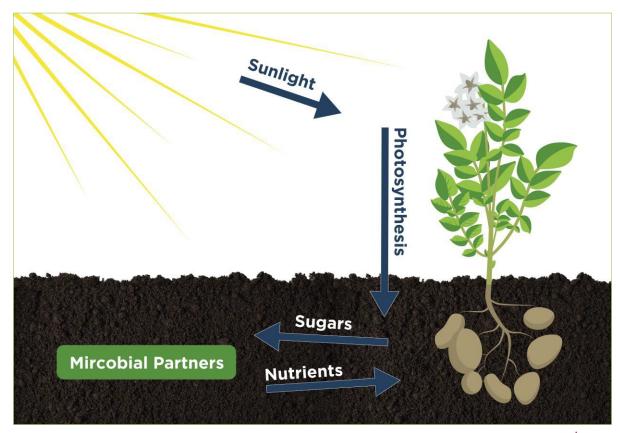
Microbe Selection

Chosen and tested specifically to match local growing environment and crop to ensure highest degree of success

Microbial Viability

Ensure integrity of product from production through to end consumer and meet label specification

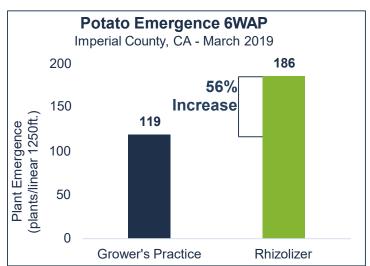
Food Source

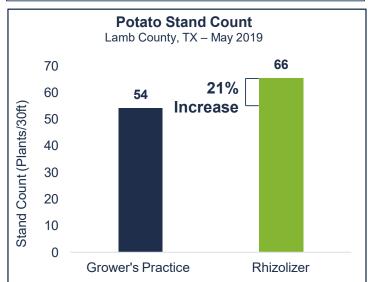

Ensure colonization of soil profile and root system based on specific needs of those microorganisms; reduce variability

- √ Growers already realizing benefits
- √ Fits into grower's existing production practices
- ✓ Performs in a variety of growing environments
- √ Additional tools for growers

Soil Microbes: Symbiotic Relationship with Plants

- 1. Plants fix sugars through photosynthesis in their leaves
- 2. Sugars are translocated throughout the plant
- Up to 20% of sugars are exuded through root system to attract and feed beneficial microbial partners
- Microbes provide plant with nutrients, extend root system, and improve soil quality

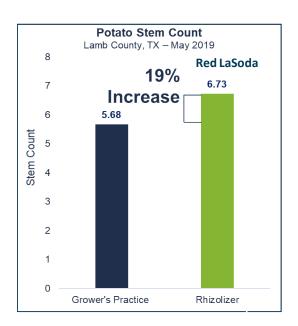


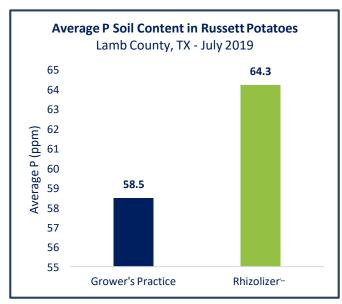


Early Season Benefits From Microbial Soil Amendments


At plant applications or during early season growth microbes promote:

- Quicker and improved germination
- √ Better stand count
- ✓ Increase yield potential
- ✓ Reduce time to market

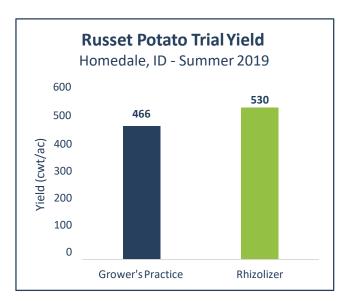


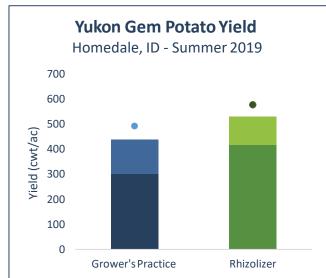


Mid-Season Benefits From Microbial Soil Amendments

More developed root system will form deep and fibrous root mass, which in turn can enhance the volume of available surface area for:

- ✓ Outcompete weeds through quicker canopy closure
- More efficient water utilization
- ✓ Improved nutrient uptake into the plant

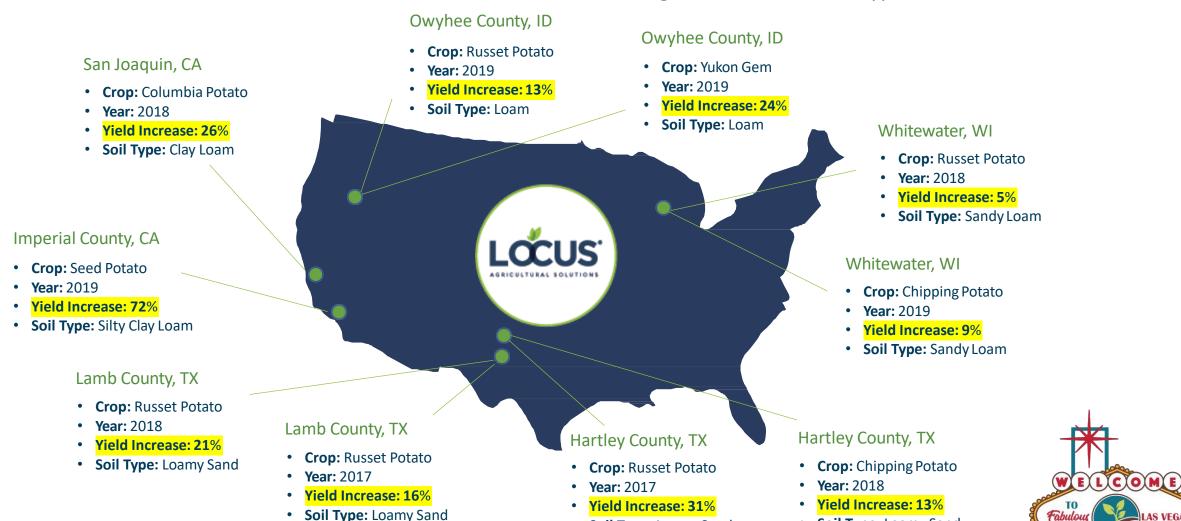




Late Season Benefits From Microbial Soil Amendments

Late season crop performance benefits from microbial product applications:

- ✓ Improve yields through more vigorous growth throughout growing season
- ✓ Increase crop abiotic resistance and withstand stress
- √ Higher proportion of marketable crop, less culls



= Total YieldLight color = >8ozDark color = 2-8oz

Field Trials Confirm Excellent Results Using Microbials

Consistent Yield Increases and Attractive ROI Across Various Growing Environments, Soil Types, and Seasons

Soil Type: Loamy Sand

• Soil Type: Loamy Sand

Environmental Benefits of Microbes

The agronomic benefits of microbial use result in additional environmental benefits:

Enhanced Soil Health

- Better aeration and soil structure
- Less runoff of inorganic fertilizers into waterways
- Support healthy microbiome
- Minimized soil erosion
- Improved water movement and availability

Better Photosynthesis

 Enables plant to be a more productive carbon pump

Reduced GHG Emissions

- Maximized carbon deposition as soil microaggregates
- Less N₂0 emissions from efficient nitrogen utilization
- Less methane emissions from dead microbes

Consistent performance across a variety of soil types and growing conditions should support the adoption of these technologies alongside existing practices

Microbial Ag Technology: A Growing Space

Interest and investment in the microbial ag tech space has grown significantly

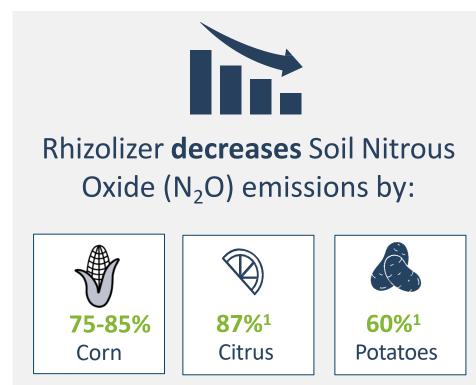
Thank You

Alexander Fotsch

Locus Agricultural Solutions

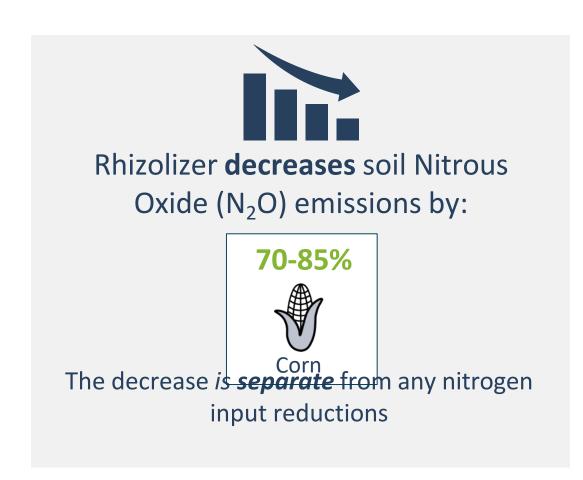
Vice President of Agricultural Operations

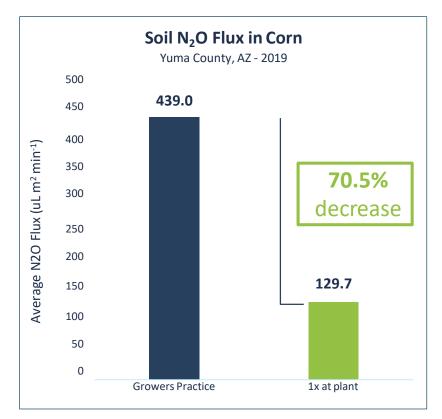
(440) 561-0800; 119

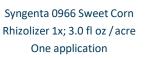

afotsch@locusfs.com

Significant Reduction in Soil Nitrous Oxide Emissions

Soil Nitrous Oxide emissions incur one of the highest carbon intensity penalties






The decrease is **separate** from any nitrogen input reductions

Significant Reduction in Soil Nitrous Oxide Emissions

 N_2O is a far more potent greenhouse gas (GHG) than CO_2 emissions (300x worse), and its soil emissions incur one of the highest carbon intensity penalties

